Solve the following using identities (Part-2)
1. x^2 + 6x + 8
Sol. By using identity
{(x + a) (x + b) = x^2 + (a + b)x + ab }x^2 + 6x + 8
x^2 + (2 + 4)x + 8
(x + 2) (x + 4)
2. x^2 + 5x + 6
Sol. By using identity
{(x + a) (x + b) = x^2 + (a + b)x + ab }x^2 + 5x + 6
x^2 + (2 + 3)x + 6
(x + 2) (x + 3)
3. x^2 + 5x + 4
Sol. By using identity
{(x + a) (x + b) = x^2 + (a + b)x + ab }x^2 + 5x + 4
x^2 + (1 + 4)x + 4
(x + 1) (x + 4)
4. x^2 + 3x + 2
Sol. By using identity
{(x + a) (x + b) = x^2 + (a + b)x + ab }x^2 + 3x + 2
x^2 + (1 + 2)x + 2
(x + 1) (x + 2)
Sol. By using identity
{(x + a) (x - a) = x^2 - a^2 }x^2 - 1
(x + 1) (x - 1)
maths-ncert-solution |
Sol. By using identity
{(x + a) (x - a) = x^2 - a^2 }x^2 - 4
(x + 2) (x - 2)
7. x^2 - 9
Sol. By using identity
{(x + a) (x - a) = x^2 - a^2 }x^2 - 9
(x + 3) (x - 3)
8. x^2 - 16
Sol. By using identity
{(x + a) (x - a) = x^2 - a^2 }x^2 - 16
(x + 4) (x - 4)
9. x^2 + 8 x + 16
Sol. By using identity
{(x + a)^2 = x^2 + a^2 + 2 a b }x^2 + 8 x + 16
x^2 + 2 * x * 4 + 4^2
( x + 4 )^2
10. x^2 + 6 x + 9
Sol. By using identity
{(x + a)^2 = x^2 + a^2 + 2 a b }x^2 + 6 x + 9
x^2 + 2 * x * 3 + 3^2
( x + 3 )^2
maths-ncert-solution |
Sol. By using identity
{(x + a)^2 = x^2 + a^2 + 2 a b }x^2 + 4 x + 4
x^2 + 2 * x * 2 + 2^2
( x + 2 )^2
12. x^2 + 2 x + 1
Sol. By using identity
{(x + a)^2 = x^2 + a^2 + 2 a b }x^2 + 2 x + 1
x^2 + 2 * x * 1 + 1^2
( x + 1 )^2
13. x^2 - 8 x + 16
Sol. By using identity
{(x - a)^2 = x^2 + a^2 - 2 a b }x^2 - 8 x + 16
x^2 - 2 * x * 4 + 4^2
( x - 4 )^2
14. x^2 - 6 x + 9
Sol. By using identity
{(x - a)^2 = x^2 + a^2 - 2 a b }x^2 - 6 x + 9
x^2 - 2 * x * 3 + 3^2
( x - 3 )^2
15. x^2 - 4 x + 4
Sol. By using identity
{(x - a)^2 = x^2 + a^2 - 2 a b }x^2 - 4 x + 4
x^2 - 2 * x * 2 + 2^2
( x - 2 )^2
16. x^2 - 2 x + 1
Sol. By using identity
{(x - a)^2 = x^2 + a^2 - 2 a b }x^2 - 2 x + 1
x^2 - 2 * x * 1 + 1^2
( x - 1 )^2
0 comments:
Post a Comment