Solve the following using identities (Part - 7)


Solve the following using identities (Part - 7)



1. 8 x^3 + 27 y^3 + 8 z^3 – 36 x y z
Sol. Using identity
x^3 + y^3 + z^3 – 3 x y z = (x + y + z) (x^2 + y^2 + z^2 – x y – y z – z x)
8 x^3 + 27 y^3 + 8 z^3 – 36 x y z
(2 x)^3 + (3 y)^3 + (2 z)^3 – 3 * 2x * 3y * 2z
(2 x + 3 y + 2 z) {(2 x)^2 + (3 y)^2 + (2 z)^2 – 2x * 3y – 3y * 2z – 2 z * 2x}
(2 x + 3 y + 2 z) (4 x^2 + 9 y^2 + 4 z^2 – 6 x y – 6 y z – 4 z x}

2. 27 x^3 + 8 y^3 + 27 z^3 – 54 x y z
Sol. Using identity
x^3 + y^3 + z^3 – 3 x y z = (x + y + z) (x^2 + y^2 + z^2 – x y – y z – z x)
27 x^3 + 8 y^3 + 27 z^3 – 54 x y z
(3 x)^3 + (2 y)^3 + (3 z)^3 – 3 * 3x * 2y * 3z
(3 x + 2 y + 3 z) {(3 x)^2 + (2 y)^2 + (3 z)^2 – 3 x * 2 y – 2 y * 3 z – 3 z * 3x}
(3 x + 2 y + 3 z) (9 x^2 + 4 y^2 + 9 z^2 – 6 x y – 6 y z – 9 z x}

3. 8 x^3 + 27 y^3 + 8 z^3 – 36 x y z If x + y + z = 0 so prove that 8 x^3 + 27 y^3 + 8 z^3 = 36 x y z
Sol. Using identity
x^3 + y^3 + z^3 – 3 x y z = (x + y + z) (x^2 + y^2 + z^2 – x y – y z – z x)
Given x + y + z = 0
x^3 + y^3 + z^3 – 3 x y z = ( 0 ) * (x^2 + y^2 + z^2 – x y – y z – z x)
x^3 + y^3 + z^3 – 3 x y z = 0
So identity became x^3 + y^3 + z^3 = 3 x y z
8 x^3 + 27 y^3 + 8 z^3 – 36 x y z = 0
8 x^3 + 27 y^3 + 8 z^3 = 36 x y z

maths-ncert-solution, maths tricks
maths-ncert-solution

4. If x + y + z = 0 so prove that  x^3 + y^3 + z^3 = 3 x y z.
Sol. Using identity
x^3 + y^3 + z^3 – 3 x y z = (x + y + z) (x^2 + y^2 + z^2 – x y – y z – z x)
Given x + y + z = 0
x^3 + y^3 + z^3 – 3 x y z = ( 0 ) * (x^2 + y^2 + z^2 – x y – y z – z x)
x^3 + y^3 + z^3 – 3 x y z = 0
So identity became x^3 + y^3 + z^3 = 3 x y z

5. (-15)^3 + (7)^3 + (8)^3
Sol. x + y + z = 0 => -15 + 7 + 8 = 0 => 0 = 0
Using identity
x^3 + y^3 + z^3 = 3 x y z
(-15)^3 + (7)^3 + (8)^3
3 * (-15) * 7 * 8
-2520

6. (-5)^3 + (3)^3 + (2)^3
Sol. x + y + z = 0 => -5 + 3 + 2 = 0 => 0 = 0
Using identity
x^3 + y^3 + z^3 = 3 x y z
(-5)^3 + (3)^3 + (2)^3
3 * (-5) * 3 * 2
-90

7. We know that
Area = Length * Breath

a). x^2 + 6x + 8
Sol. By using identity 
{(x + a) (x + b) = x^2 + (a + b)x + ab }
x^2 + 6x + 8                       
x^2 + (2 + 4)x + 8 
(x + 2) (x + 4)
So possible length = (x + 2)
And possible breath = (x + 4)

b). x^2 + 5x + 6
Sol. By using identity 
{(x + a) (x + b) = x^2 + (a + b)x + ab }
x^2 + 5x + 6                       
x^2 + (2 + 3)x + 6
(x + 2) (x + 3)
So possible length = (x + 2)
And possible breath = (x + 3)


SHARE

Milan Tomic

Hi. I’m Designer of Blog Magic. I’m CEO/Founder of ThemeXpose. I’m Creative Art Director, Web Designer, UI/UX Designer, Interaction Designer, Industrial Designer, Web Developer, Business Enthusiast, StartUp Enthusiast, Speaker, Writer and Photographer. Inspired to make things looks better.

  • Image
  • Image
  • Image
  • Image
  • Image
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment

Youtube earning methods Question: YouTube pe product placement ka istemal karke paise kaise kamaye ja sakte hain? Answer: YouTube par produc...