Find the factors of Polynomial
1. 6 x^2 - 5 x + 1
6 x^2 – 2 x – 3 x + 1
2 x ( 3 x – 1 ) – 1 ( 3 x – 1 )
( 2 x – 1) ( 3 x – 1 )
2. 2 x^2 - 3 x + 1
2 x^2 – 2 x – x + 1
2 x ( x – 1 ) – 1 ( x – 1 )
( 2 x – 1) ( x – 1 )
3. 3 x^2 - 5 x + 2
3 x^2 – 2 x – 3 x + 2
x ( 3 x – 2 ) – 1 ( 3 x – 2 )
( 3 x – 2 ) ( x – 1 )
4. 6 x^2 + 5 x - 1
6 x^2 + 6 x – x - 1
6 x ( x + 1 ) – 1 ( x + 1 )
( 6 x – 1) ( x + 1 )
5. 2 x^2 + 3 x + 1
2 x^2 + 2 x + x + 1
2 x ( x + 1 ) + 1 ( x + 1 )
( 2 x + 1) ( x + 1 )
6. 3 x^2 + 5 x + 2
3 x^2 + 2 x + 3 x + 2
x ( 3 x + 2 ) + 1 ( 3 x + 2 )
( 3 x + 2 ) ( x + 1 )
maths-ncert-solution |
7. P(x) = x^3 – 2 x^2 – x + 2
By trial Method
P(2) = 2^3 – 2 * 2^2 – 2 + 2 = 0
x^2 ( x – 2 ) -1 (
x – 2 ) = 0
( x – 2 ) ( x^2 – 1 )
( x – 2 ) ( x + 1 ) ( x - 1 )
8. P(x) = x^3 – x^2 –
4 x + 4
By trial Method
P(1) = 1^3 – 1^2 – 4 * 1 + 4 = 0
x^2 ( x – 1 ) -4 (
x – 1 ) = 0
( x – 1 ) ( x^2 – 4 )
( x - 1 ) ( x – 2 ) ( x + 2 )
9. P(x) = x^3 – 3 x^2 – x + 3
By trial Method
P(1) = 1^3 – 3 * 1^2 – 1 + 3 = 0
x^2 ( x – 1 ) - 2 x
( x – 1 ) - 3 ( x – 1 ) = 0
( x – 1 ) ( x^2 – 2 x – 3 )
( x – 1 ) ( x^2 – 3 x + x -3 )
( x – 1 ) { x ( x – 3 ) +1 ( x – 3 )}
( x – 1 ) ( x + 1 ) ( x – 3 )
10. P(x) = x^3 + 3 x^2 – x - 3
By trial Method
P(1) = 1^3 – 3 * 1^2 – 1 - 3 = 0
x^2 ( x – 1 ) + 4 x
( x – 1 ) + 3 ( x – 1 ) = 0
( x – 1 ) ( x^2 + 4 x + 3 )
( x – 1 ) ( x^2 + 3 x + x + 3 )
( x – 1 ) { x ( x + 3 ) +1 ( x + 3 )}
( x – 1 ) ( x + 1 ) ( x + 3 )
0 comments:
Post a Comment