1). Find the value of a and b
If 1/ (√5 + √2) = a√5 + b√2
Sol. 1/ (√5 + √2) =
a√5 + b√2 …..(1)
Taking L.H.S
1/ (√5 + √2) = {1/ (√5 + √2)} * {( √5 - √2 ) /
(√5 - √2)] = { (√5 - √2) / (5 – 2)} = (√5 - √2) / 3
(√5/3 - √2/3) = a√5 + b√2
Compare both side
a = 1/3 b = -1/2
2). Find the value of a and b
If 1/ (√5 - √2) = a√5 + b√2
Sol. 1/ (√5 - √2) =
a√5 + b√2 …(1)
Taking L.H.S
1/ (√5 - √2) = {1/
(√5 - √2)}*{( √5 + √2 ) / (√5 + √2)] = { (√5 + √2) / (5 – 2)} = (√5 + √2) /
3
By equation (1)
(√5/3 + √2/3) = a√5 + b√2
Compare both side
a = 1/3 b = 1/2
3). Find the value of a and b
If 1/ (√5 + √3) = a√5 + b√3
Sol. 1/ (√5 + √3) =
a√5 + b√3 ….(1)
Taking L.H.S
1/ (√5 + √3) = {1/
(√5 + √3)} * {( √5 - √3 ) / (√5 - √3)] = { (√5 - √3) / (5 – 3)} = (√5 - √3) / 2
By equation (1)
(√5/2 - √2/2) = a√5 + b√2
Compare both side
a = 1/2 b = -1/2
4). Find the value of a and b
If 1/ (√3 + √2) = a√3 - b√2
Sol. 1/ (√3 + √2) = a√3 - b√2 ….(1)
Taking L.H.S
1/ (√3 + √2) = {1/
(√3 + √2)} * {( √3 - √2 ) / (√3 - √2)] = { (√3 - √2) / (3 – 2)} = (√3 - √2)
By equation (1)
(√3 - √2) = a√3 - b√2
Compare both side
a = 1 b = 1
5). Find the value of a and b
If 1/ (√5 - √3) = a√5 + b√3
Sol. 1/ (√5 - √3) =
a√5 + b√3 ….(1)
Taking L.H.S
1/ (√5 - √3) = {1/
(√5 - √3)} * {( √5 + √3 ) / (√5 + √3)] = { (√5 + √3) / (5 – 3)} = (√5 + √3) / 2
By equation (1)
(√5/2 + √3/2) = a√5 + b√3
Compare both side
a = 1/2 b = 1/2
6). Find the value of a and b
If 1/ (√3 - √2) = a√3 + b√2
Sol. 1/ (√3 - √2) =
a√3 + b√2 ….(1)
Taking L.H.S
1/ (√3 - √2) = {1/
(√3 - √2)} * {( √3 + √2 ) / (√3 + √2)] = { (√3 - √2) / (3 – 2)} = (√3 - √2)
By equation (1)
(√3 - √2) = a√3 + b√2
Compare both side
a = 1 b = -1
7). Find the value of a and b
If 1/ (√7 + 2) = a√7 + b
Sol. 1/ (√7 + 2) =
a√7 + b ….(1)
Taking L.H.S
1/ (√7 + 2) = {1/
(√7 + 2)} * {( √7 - 2 ) / (√7 - 2)] = { (√7 - 2) / (7 – 4)} = (√7 - 2) / 3
By equation (1)
(√7/3 – 2/3) = a√7 + b
Compare both side
a = 1/3 b = -2/3
8). Find the value of a and b
If 1/ (√7 - 2) = a√7 + b
Sol. 1/ (√7 - 2) =
a√7 + b ….(1)
Taking L.H.S
1/ (√7 - 2) = {1/
(√7 - 2)} * {( √7 + 2 ) / (√7 + 2)] = { (√7 + 2) / (7 – 4)} = (√7 + 2) / 3
By equation (1)
(√7/3 + 2/3) = a√7 + b
Compare both side
a = 1/3 b = 2/3
9). Find the value of a and b
If 1/ (√7 - √6) = a√7 + b√6
Sol. 1/ (√7 - √6) =
a√7 + b√6 ….(1)
Taking L.H.S
1/ (√7 - √6) = {1/
(√7 - √6)} * {( √7 + √6 ) / (√7 + √6)] = { (√7 + √6) / (7 – 6)} = (√7 + √6)
By equation (1)
(√7 + √6) = (a√7 + b√6)
Compare both side
a = 1 b = 1
Note :-
Use conjugate to rationalize numbers.
0 comments:
Post a Comment